ÃÛÌÒ´«Ã½app

Event

Feindel Brain and Mind Seminar Series: Steps Towards Laminar Resolution in Non-invasive Human Electrophysiology

Monday, September 23, 2024 13:00to14:00
Montreal Neurological Institute De Grandpre Communications Centre, 3801 rue University, Montreal, QC, H3A 2B4, CA

The Feindel Brain and Mind Seminar Series will advance the vision of Dr. William Feindel (1918–2014), Former Director of the Neuro (1972–1984), to constantly bridge the clinical and research realms. The talks will highlight the latest advances and discoveries in neuropsychology, cognitive neuroscience, and neuroimaging.

Speakers will include scientists from across The Neuro, as well as colleagues and collaborators locally and from around the world. The series is intended to provide a virtual forum for scientists and trainees to continue to foster interdisciplinary exchanges on the mechanisms, diagnosis and treatment of brain and cognitive disorders.


To attend in person, register

To watch via Vimeo, clickÌý


Saskia Helbling

Research Associate,ÌýErnst Strüngmann Institute for Neuroscience, Germany

Research Associate, Max Planck Institute for Human Cognitive and Brain Sciences, Germany

Host: christine.tardif [at] mcgill.ca (Christine Tardif)

´¡²ú²õ³Ù°ù²¹³¦³Ù:ÌýAdvances in neuroimaging and electrophysiology have enabled non-invasive investigation of human brain function at increasingly fine spatial scales. I present three interconnected research projects towards achieving laminar resolution in non-invasive human electrophysiology. First, I demonstrate how myelin-informed forward models derived from high-resolution quantitative MRI enhance MEG/EEG source reconstruction. Second, building on this structural-functional relationship, I examine the microstructural foundations of cortical speech tracking. By leveraging high-resolution cortical myelination maps, this approach offers insights into the potential laminar origins of low-frequency auditory activity and top-down modulatory signals during speech perception. Finally, I present a simulation study that investigates the potential of optically pumped magnetometers (OPMs) for inferring laminar origins of MEG signals, demonstrating the benefits of on-scalp sensors for laminar inference. These complementary approaches aim to push the boundaries of spatial resolution in non-invasive electrophysiology, offering new perspectives on cortical layer-specific activity and structure-function relationships in the human brain.

The Neuro logoÌýMcGill logo

Ìý

The Neuro (Montreal Neurological Institute-Hospital)Ìýis a bilingual academic healthcare institution. We are aÌýMcGill research and teaching institute; delivering high-quality patient care, as part of the Neuroscience Mission of the McGill University Health Centre.ÌýWe areÌýproud to be a Killam Institution, supported by the Killam Trusts.

Ìý

Ìý

Back to top