ÃÛÌÒ´«Ã½app

Major Chemistry - Measurement (62 credits)

important

Note: This is the 2019–2020 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .

Offered by: Chemistry     Degree: Bachelor of Science

Program Requirements

The B.Sc.; Major in Chemistry; Measurement provides an emphasis on additional background and advanced courses of interest to physical and analytical chemists.

Program Prerequisites

PRE-PROGRAM REQUIREMENTS:

Students entering from the Freshman program must have included CHEM 110 and CHEM 120 or CHEM 115, BIOL 111 or BIOL 112, MATH 133, MATH 140/MATH 141 or MATH 150/MATH 151, PHYS 131/PHYS 142, or their equivalents in their Freshman year. Quebec students must have completed the DEC with appropriate science and mathematics courses. Note that students who have successfully completed MATH 150 and MATH 151 do not have to take MATH 222.

Required Courses (59 credits)

The required courses in this program consist of 59 credits in chemistry, physics and mathematics, listed below. The courses marked with an asterisk (*) are omitted from the program of students who have successfully completed them at the CEGEP level. Students completing this program will not be eligible for admission to the Ordre des chimistes du Québec without additional chemistry electives. This program is not currently accredited by the Canadian Society for Chemistry. See .

Completion of Mathematics MATH 222 and MATH 315 during U1 is also strongly recommended.

* Denotes courses with CEGEP equivalents.
** Students who have successfully completed MATH 150 and MATH 151 are not required to take MATH 222.

  • CHEM 212 Introductory Organic Chemistry 1 (4 credits) *

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.

    Terms: Fall 2019, Winter 2020, Summer 2020

    Instructors: Pavelka, Laura; Vlaho, Danielle; Daoust, Michel (Fall) Pavelka, Laura; Luedtke, Nathan; Vlaho, Danielle; Gauthier, Jean-Marc (Winter) Sirjoosingh, Pallavi; Vlaho, Danielle; Pavelka, Laura (Summer)

    • Fall, Winter, Summer

    • Prerequisite: CHEM 110 or equivalent.

    • Corequisite: CHEM 120 or equivalent.

    • Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent

    • Each lab section is limited enrolment

    • Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().

  • CHEM 213 Introductory Physical Chemistry 1: Thermodynamics (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Thermodynamics. Topics include gas laws, kinetic theory of collisions, heat capacity, enthalpy, thermochemistry, bond energies, the entropy and free energy functions, absolute entropies, Maxwell relations and chemical and thermodynamic equilibrium states, phase rule and phase diagrams, ideal solutions, colligative properties, solubility, electrochemistry, Debye-Hückel Theory.

    Terms: Fall 2019

    Instructors: Blum, Amy (Fall)

  • CHEM 222 Introductory Organic Chemistry 2 (4 credits) *

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.

    Terms: Fall 2019, Winter 2020, Summer 2020

    Instructors: Vlaho, Danielle; Daoust, Michel; Auclair, Karine; Pavelka, Laura (Fall) Pavelka, Laura; Moitessier, Nicolas; Vlaho, Danielle; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Vlaho, Danielle; Sirjoosingh, Pallavi (Summer)

    • Fall, Winter

    • Prerequisite: CHEM 212 or equivalent.

    • Restriction: Not open to students who have taken an equivalent Organic 2 at CEGEP (see McGill University Basic Math and Sciences Equivalence Table at ) or who have or are taking CHEM 234.

  • CHEM 267 Introductory Chemical Analysis (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Qualitative and quantitative analysis. A survey of methods of analysis including theory and practice of semimicro qualitative analysis and representative gravimetric, volumetric and instrumental methods. The laboratory component includes introductory experiments in analytical chemistry emphasizing classical and instrumental methods of quantitative analysis.

    Terms: Fall 2019

    Instructors: Mauzeroll, Janine; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Sirjoosingh, Pallavi (Fall)

  • CHEM 273 Introductory Physical Chemistry 2: Kinetics and Methods (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Kinetics: Transition State Theory, complex reactions, free-radical reactions, chain reactions, catalysis, reactions at surfaces, ionic effects of reactions in solution, photochemistry. Methods: physical chemistry laboratory, differential equations and linear algebra applied to physical chemistry, computation methods for data analysis and modeling

    Terms: Winter 2020

    Instructors: Gauthier, Jean-Marc; McCalla, Eric Russell; Ronis, David M (Winter)

  • CHEM 281 Inorganic Chemistry 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acid-base chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.

    Terms: Winter 2020

    Instructors: Kakkar, Ashok K; Butler, Ian Sydney (Winter)

  • CHEM 345 Introduction to Quantum Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to quantum chemistry covering the historical development, wave theory, methods of quantum mechanics, and applications of quantum chemistry.

    Terms: Fall 2019

    Instructors: Reven, Linda G; Ronis, David M (Fall)

  • CHEM 355 Applications of Quantum Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : A survey of the principles of electronic, vibrational and rotational spectroscopy. Magnetic resonance and computational methods.

    Terms: Winter 2020

    Instructors: Siwick, Bradley (Winter)

  • CHEM 365 Statistical Thermodynamics (2 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Molecular basis of thermodynamics with applications to ideal gases and simple solids. Topics to be covered will include: calculation of thermodynamic functions, chemical equilibrium constants, Einstein and Debye models of solids, absolute reaction rate theory, Debye-Hückel theory of strong electrolytes.

    Terms: Winter 2020

    Instructors: Simine, Yelena (Winter)

  • CHEM 367 Instrumental Analysis 1 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : An introduction to modern instrumental analysis emphasizing chromatography, electrochemical methods and computational data analysis. Analytical methods to be examined in detail include gas-liquid and high performance liquid chromatography, LC mass spectrometry, and advanced electro-analysis techniques

    Terms: Fall 2019

    Instructors: Sewall, Samuel Lewis; Thibodeaux, Christopher (Fall)

    • Fall

    • Prerequisite(s): CHEM 267.

    • Each lab section is limited enrolment

  • CHEM 377 Instrumental Analysis 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Spectroscopic methods of analysis will be studied with respect to fundamentals, operational aspects and instrument design. Topics will range from UV-visible to x-ray spectrometry. Methodologies will be evaluated with respect to their application in spectrometric systems. Laboratory automation will be studied and applied in the laboratory.

    Terms: Winter 2020

    Instructors: Preston, Thomas; Sirjoosingh, Pallavi; Sewall, Samuel Lewis (Winter)

    • Winter

    • Prerequisite: CHEM 367

    • Each lab section is limited enrolment

  • CHEM 381 Inorganic Chemistry 2 (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.

    Terms: Fall 2019

    Instructors: Bohle, David; Butler, Ian Sydney (Fall)

    • Fall

    • Prerequisite: CHEM 281.

    • Restriction: For Honours and Major Chemistry students

  • CHEM 493 Advanced Physical Chemistry Laboratory (2 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Selected experiments to illustrate physico-chemical principles more advanced than those of CHEM 283.

    Terms: Fall 2019, Winter 2020

    Instructors: Sewall, Samuel Lewis; Mittermaier, Anthony (Fall) Sewall, Samuel Lewis; Mittermaier, Anthony (Winter)

    • Prerequisite(s): CHEM 283 and CHEM 345 or permission of instructor

    • Corequisite(s): CHEM 355

    • Restriction(s): Not open to students who are taking or have taken CHEM 393.

    • Fall, Winter

    • Each lab section has limited enrolment.

  • CHEM 575 Chemical Kinetics (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Kinetic laws, measurement of reaction rates, transition state and collision theory, experimental techniques in reaction kinetics, reaction mechanisms, RRKM theory, Marcus theory of electron transfer, photochemistry and catalysis. Recent developments and their application to chemical and biological problems. Elementary reactions in gas, solution and solid phases and on surfaces.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

  • COMP 208 Computer Programming for Physical Sciences and Engineering (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Overview

    Computer Science (Sci) : Programming and problem solving in a high level computer language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms such as searching and sorting. Modular software design, libraries, file input and output, debugging. Emphasis on applications in Physical Sciences and Engineering, such as root finding, numerical integration, diffusion, Monte Carlo methods.

    Terms: Fall 2019, Winter 2020

    Instructors: Campbell, Jonathan; Parekh, Deven (Fall) Campbell, Jonathan (Winter)

    • 3 hours

    • Prerequisite: MATH 141 or equivalent.

    • Corequisite: MATH 133 or equivalent.

    • Restrictions: Credit can be given only for one of COMP 202, COMP 204, or COMP 208. COMP 208 cannot be taken for credit with or after COMP 250 or COMP 206.

    • COMP 202 is intended as a general introductory course, while COMP 208 is intended for students with sufficient math background and in (non-life) science or engineering fields.

  • MATH 222 Calculus 3 (3 credits) **

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.

    Terms: Fall 2019, Winter 2020, Summer 2020

    Instructors: Macdonald, Jeremy; Causley, Broderick (Fall) Fortier, Jérôme (Winter) Fortier, Jérôme (Summer)

  • MATH 223 Linear Algebra (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.

    Terms: Fall 2019, Winter 2020

    Instructors: Kelome, Djivede (Fall) Macdonald, Jeremy (Winter)

    • Fall and Winter

    • Prerequisite: MATH 133 or equivalent

    • Restriction: Not open to students in Mathematics programs nor to students who have taken or are taking MATH 236, MATH 247 or MATH 251. It is open to students in Faculty Programs

  • MATH 315 Ordinary Differential Equations (3 credits)

    Offered by: Mathematics and Statistics (Faculty of Science)

    Overview

    Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.

    Terms: Fall 2019, Winter 2020, Summer 2020

    Instructors: Nave, Jean-Christophe (Fall) Bélanger-Rioux, Rosalie (Winter) Roth, Charles (Summer)

    • Prerequisite: MATH 222.

    • Corequisite: MATH 133.

    • Restriction: Not open to students who have taken or are taking MATH 325.

  • PHYS 241 Signal Processing (3 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.

    Terms: Winter 2020

    Instructors: Reisner, Walter (Winter)

    • Winter

    • 2 hours lectures; 3 hours laboratory alternate weeks

    • Prerequisite: CEGEP physics or PHYS 142.

  • PHYS 242 Electricity and Magnetism (2 credits)

    Offered by: Physics (Faculty of Science)

    Overview

    Physics : Properties of electromagnetic fields, dipole and quadropole fields and their interactions, chemical binding of molecules, electromagnetic properties of materials, Maxwell's equations and properties of electromagnetic waves, propagation of waves in media.

    Terms: Fall 2019

    Instructors: Chiang, Hsin Cynthia (Fall)

    • Fall

    • 2 hours lectures

    • Prerequisites: CEGEP Physics, MATH 222

Complementary Courses (3 credits)

3 credits from:

  • CHEM 514 Biophysical Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Physical chemistry concepts needed to understand the function of biological systems at the molecular level, including the structure, stability, transport, and interactions of biological macromolecules.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

  • CHEM 516 Nuclear and Radiochemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Basic properties of the atomic nucleus, nuclear reactions as well as nuclear fission. Kinetics of the radioactive decay, the interaction of radiation with matter and the different kinds of radiation. Hot atom chemistry, modern aspects of medicinal radiochemistry such as Positron Emission Tomography.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

  • CHEM 531 Chemistry of Inorganic Materials (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Structure, bonding, synthesis, properties and applications of covalent, ionic, metallic crystals, and amorphous solids. Defect structures and their use in synthesis of specialty materials such as electronic conductors, semiconductors, and superconductors, and solid electrolytes. Basic principles of composite materials and applications of chemistry to materials processing.

    Terms: Winter 2020

    Instructors: Andrews, Mark P; Butler, Ian Sydney (Winter)

  • CHEM 533 Small Molecule Crystallography (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Fundamentals of x-ray diffraction related to small molecule structure resolution, space groups, diffraction theory, strategies for structure solution, and refinement will be covered.

    Terms: Winter 2020

    Instructors: Bohle, David (Winter)

    • Winter

    • Prerequisite: CHEM 355 or permission of instructor.

  • CHEM 534 Nanoscience and Nanotechnology (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Topics discussed include scanning probe microscopy, chemical self-assembly, computer modelling, and microfabrication/micromachining.

    Terms: Fall 2019

    Instructors: Andrews, Mark P (Fall)

  • CHEM 547 Laboratory Automation (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Automation and data handling with respect to modern chemical laboratory instrumentation. Basic electronics, data acquisition, evaluation of laboratory needs, data processing methodologies.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

    • Winter

    • Prerequisite: CHEM 377, equivalent or permission of instructor

  • CHEM 555 NMR Spectroscopy (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : NMR Spectroscopy explained in terms of quantum mechanics. Topics include multidimensional spectra, molecular dynamics, biomolecular NMR, the density matrix, and the product operator formalism.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

    • Winter

    • Prerequisite: CHEM 355 or equivalent

  • CHEM 556 Advanced Quantum Mechanics (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Quantum mechanical treatment of species of chemical interest. Introduction to perturbation theory, both time-dependent and time-independent. Treatment of the variational principle. Introduction to atomic spectra. Chemical bonding in terms of both the valence bond and molecular orbital theory. Elementary collision theory. Interaction of radiation with molecules.

    Terms: Fall 2019

    Instructors: Khaliullin, Rustam (Fall)

  • CHEM 567 Chemometrics: Data Analysis (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Topics covered include; factorial analysis of chemical spectra, pattern recognition from multisensor data, linear and nonlinear optimization for the determination of optimal reaction conditions, molecular modelling, multisensor calibration, etc.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

    • Winter

    • Prerequisite: Linear Algebra and experience in some computer programming language

  • CHEM 577 Electrochemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Fundamentals of electrochemistry and the application of electrochemical methods to chemical and biochemical problems. Emphasis is given to the study of electrode reaction mechanisms and the interpretation of electrochemical results for organic and inorganic systems. Voltammetric and coulometric methods are rigorously discussed. Several topics of interest in electrochemistry will be covered as time permits.

    Terms: Winter 2020

    Instructors: Mauzeroll, Janine (Winter)

  • CHEM 585 Colloid Chemistry (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Principles of the physical chemistry of phase boundaries. Electrical double layer theory; van der Waals forces; Brownian motion; kinetics of coagulation; electrokinetics; light scattering; solid/liquid interactions; adsorption; surfactants; hydrodynamic interactions; rheology of dispersions.

    Terms: Winter 2020

    Instructors: Van de Ven, Theodorus G (Winter)

  • CHEM 593 Statistical Mechanics (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : Intermediate topics in statistical mechanics, including: modern and classical theories of real gases and liquids, critical phenomena and the renormalization group, time-dependent phenomena, linear response and fluctuations, inelastic scattering, Monte Carlo and molecular dynamics methods.

    Terms: Fall 2019

    Instructors: Ronis, David M (Fall)

  • CHEM 597 Analytical Spectroscopy (3 credits)

    Offered by: Chemistry (Faculty of Science)

    Overview

    Chemistry : The design and analytical use of spectroscopic instrumentation with respect to fundamental and practical limitations. Classical emission, fluorescence, absorption and chemical luminescence. Topics may include photo-acoustic spectroscopy, multielement analysis, X-ray fluorescence and modern multiwavelength detector systems.

    Terms: This course is not scheduled for the 2019-2020 academic year.

    Instructors: There are no professors associated with this course for the 2019-2020 academic year.

Faculty of Science—2019-2020 (last updated Aug. 20, 2019) (disclaimer)
Back to top